Probability & Random Processes - Exam 2 Review
I’m going to use this page to help gather some of the most important information which will pertain to exam 2 and put it here!
Families of Continuous Random Variables
Name | Form | CDF | \(E[X]\) | \(Var[X]\) | |
Uniform | \((a, b)\) | \(\begin{cases} \frac{1}{b-a} & a \leq x < b \\ 0 & \text{otherwise} \\ \end{cases}\) | \(\begin{cases} 0 & x \leq a \\ \frac{x-a}{b-a} & a < x \leq b \\ 1 & x > b \\ \end{cases}\) | \(\frac{b+a}{2}\) | \(\frac{(b-a)^2}{12}\) |
Exponential | \((\lambda)\) | \(\begin{cases} \lambda e^{-\lambda x} & x \geq 0 \\ 0 & \text{otherwise} \\ \end{cases}\) | \(\begin{cases} 1- e^{-\lambda x} & x \geq 0 \\ 0 & \text{otherwise} \\ \end{cases}\) | \(\frac{1}{\lambda}\) | \(\frac{1}{\lambda^2}\) |
Erlang | \((n, \lambda)\) | \(\begin{cases} \frac{\lambda x^{n-1}e^{-\lambda x}}{(n-1)!} & x > 0 \\ 0 & \text{otherwise} \\ \end{cases}\) | \(\frac{n}{\lambda}\) | \(\frac{n}{\lambda^2}\) | |
Gaussian | \((\mu, \sigma)\) | \(\frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}\) | *\(\Phi(z) = \frac{1}{\sqrt{2\pi}}\int\limits_{-\infty}^z e^{-u^2/2} du\) | \(\mu\) | \(\sigma^2\) |
- * Note that this is the standard normal CDF of the Gaussian random variable. To adjust for \(\mu\) and \(\sigma\) use \(\Phi(\frac{x - \mu}{\sigma})\)
List of Essential Equations
- \[P[x_1 < x < x_2] = F_X(x_2) - F_X(x_1)\]
- \[\int\limits_{-\infty}^\infty f_X(x)dx = 1\]
- \[E[X] = \int\limits_{-\infty}^\infty xf_X(x) dx\]
- \[E[X-\mu_x]= 0\]
- \[E[aX + b] = aE[X] + b = 0\]
- \[Var[X] = E[X^2] - \mu_X^2\]
- \[Var[X] = E[(X-\mu_X)^2]\]
- \[Var[aX + b] = a^2Var[X]\]
- \[E[X+Y] = E[X] + E[Y]\]
- \[Var[X+Y] = Var[X] + Var[Y] + 2Cov[X, Y]\]
- \[\rho_{X,Y} = \frac{Cov[X, Y]}{\sqrt{Var[X]Var[Y]}}\]
- \[-1 \leq \rho_{X,Y} \leq 1\]
- \[r_{X,Y} = E[XY]\]
- \[Cov[X,Y] = r_{X,Y} - \mu_X\mu_Y\]
- \[Cov[X,X] = Var[X] = E[X^2] - (E[X])^2\]
Given two independent random variables:
- \[f_{X,Y}(x, y) = f_X(x)f_Y(y)\]
- \[r_{X,Y} = E[XY] = E[X]E[Y]\]
- \[Cov[X,Y] = \rho_{X,Y} = 0\]
- \[Var[X+Y] = Var[X] + Var[Y]\]