Probability & Random Processes - Final Exam Review

This page will just contain the most essential equations that pertain to topics on the final exam

Set Theory

  1. \[P[A\cap B] = P[AB]\]
  2. \[P[A] \geq 0\]
  3. \[P[\varnothing ] = 0\]
  4. \[P[A \cup B] = P[A] + P[B] - P[A \cap B]\]
  5. \[P[A^c] = 1 - P[A]\]
  6. \[P[A \vert B ] = \frac{P[AB]}{P[B]}\]
  7. \[P[B\vert B] = 1\]
  8. \[\text{Bayes Theorem: } P[B\vert A] = \frac{P[A\vert B]P[B]}{P[A]}\]
  9. \[\text{n choose k} = \begin{pmatrix} n\\k \end{pmatrix} = \frac{n!}{k!(n-k)!}\]

Table of Discrete Random Variables

Name of Random Variable Description of variable PMF Function Expected Value- \(E[X]\) Variance - \(Var[X]\)
Bernoulli number successes in 1 trial \(P_X(x) = \begin{cases} 1-p , & x = 0 \\ p , & x = 1 \\ 0, & \text{otherwise} \end{cases}\) \(p\) \(p(1-p)\)
Geometric number of trials until 1st success \(P_X(x) = \begin{cases} p(1-p)^{x-1}, & x = 0 \\0, & \text{otherwise} \end{cases}\) \(\frac{1}{p}\) \(\frac{1-p}{p^2}\)
Binomial number of successes in n trials \(P_X(x) = \begin{pmatrix} n \\ x \end{pmatrix} p^x(1-p)^{n-x}\) \(np\) \(np(1-p)\)
Pascal number of trials until k successes \(P_X(x) = \begin{pmatrix} x-1 \\ k-1 \end{pmatrix} p^k(1-p)^{x-k}\) \(\frac{k}{p}\) \(\frac{k(1-p)}{p^2}\)
Poisson Probability of x arrivals in T seconds \(P_X(x) = \begin{cases} \frac{\alpha^xe^{-\alpha}}{x!}, x = 0, 1, 2\dots \\ 0,\text{otherwise} \\ \end{cases}\) \(\alpha\) \(\alpha\)
Discrete Uniform Probability of any value between k and l \(P_X(x) = \begin{cases} \frac{1}{l - k + 1},\ x=k, k+1, k+2\dots \\ 0, \text{otherwise} \end{cases}\) \(\frac{k + l}{2}\) \(\frac{(l-k)(l-k+2)}{12}\)

Table of Continuous Random Variables

Name Form PDF CDF \(E[X]\) \(Var[X]\)
Uniform \((a, b)\) \(\begin{cases} \frac{1}{b-a} & a \leq x < b \\ 0 & \text{otherwise} \\ \end{cases}\) \(\begin{cases} 0 & x \leq a \\ \frac{x-a}{b-a} & a < x \leq b \\ 1 & x > b \\ \end{cases}\) \(\frac{b+a}{2}\) \(\frac{(b-a)^2}{12}\)
Exponential \((\lambda)\) \(\begin{cases} \lambda e^{-\lambda x} & x \geq 0 \\ 0 & \text{otherwise} \\ \end{cases}\) \(\begin{cases} 1- e^{-\lambda x} & x \geq 0 \\ 0 & \text{otherwise} \\ \end{cases}\) \(\frac{1}{\lambda}\) \(\frac{1}{\lambda^2}\)
Erlang \((n, \lambda)\) \(\begin{cases} \frac{\lambda x^{n-1}e^{-\lambda x}}{(n-1)!} & x > 0 \\ 0 & \text{otherwise} \\ \end{cases}\)   \(\frac{n}{\lambda}\) \(\frac{n}{\lambda^2}\)
Gaussian \((\mu, \sigma)\) \(\frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}\) *\(\Phi(z) = \frac{1}{\sqrt{2\pi}}\int\limits_{-\infty}^z e^{-u^2/2} du\) \(\mu\) \(\sigma^2\)

List of Essential Equations

  1. \[P[x_1 < x < x_2] = F_X(x_2) - F_X(x_1)\]
  2. \[\int\limits_{-\infty}^\infty f_X(x)dx = 1\]

Expected Value

  1. \[E[X] = \int\limits_{-\infty}^\infty xf_X(x) dx\]
  2. \[E[X-\mu_x]= 0\]
  3. \[E[aX + b] = aE[X] + b = 0\]
  4. \[E[X+Y] = E[X] + E[Y]\]

Variance

  1. \[Var[X] = E[X^2] - \mu_X^2\]
  2. \[Var[X] = E[(X-\mu_X)^2]\]
  3. \[Var[aX + b] = a^2Var[X]\]
  4. \[Var[X+Y] = Var[X] + Var[Y] + 2Cov[X, Y]\]

Covariance & Correleational Coefficients

  1. \[\rho_{X,Y} = \frac{Cov[X, Y]}{\sqrt{Var[X]Var[Y]}}\]
  2. \[-1 \leq \rho_{X,Y} \leq 1\]
  3. \[r_{X,Y} = E[XY]\]
  4. \[Cov[X,Y] = r_{X,Y} - \mu_X\mu_Y\]
  5. \[Cov[X,X] = Var[X] = E[X^2] - (E[X])^2\]

Independent Variables

Given two independent random variables:

  1. \[f_{X,Y}(x, y) = f_X(x)f_Y(y)\]
  2. \[r_{X,Y} = E[XY] = E[X]E[Y]\]
  3. \[Cov[X,Y] = \rho_{X,Y} = 0\]
  4. \[Var[X+Y] = Var[X] + Var[Y]\]
Probability & Random Processes - Final Exam Review - zac blanco